Interpolation of steady-state concentration data by inverse modeling.
نویسندگان
چکیده
In most groundwater applications, measurements of concentration are limited in number and sparsely distributed within the domain of interest. Therefore, interpolation techniques are needed to obtain most likely values of concentration at locations where no measurements are available. For further processing, for example, in environmental risk analysis, interpolated values should be given with uncertainty bounds, so that a geostatistical framework is preferable. Linear interpolation of steady-state concentration measurements is problematic because the dependence of concentration on the primary uncertain material property, the hydraulic conductivity field, is highly nonlinear, suggesting that the statistical interrelationship between concentration values at different points is also nonlinear. We suggest interpolating steady-state concentration measurements by conditioning an ensemble of the underlying log-conductivity field on the available hydrological data in a conditional Monte Carlo approach. Flow and transport simulations for each conditional conductivity field must meet the measurements within their given uncertainty. The ensemble of transport simulations based on the conditional log-conductivity fields yields conditional statistical distributions of concentration at points between observation points. This method implicitly meets physical bounds of concentration values and non-Gaussianity of their statistical distributions and obeys the nonlinearity of the underlying processes. We validate our method by artificial test cases and compare the results to kriging estimates assuming different conditional statistical distributions of concentration. Assuming a beta distribution in kriging leads to estimates of concentration with zero probability of concentrations below zero or above the maximal possible value; however, the concentrations are not forced to meet the advection-dispersion equation.
منابع مشابه
Analytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method
The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...
متن کاملSteady Flow Analysis and Modeling of the Gas Distribution Network Using the Electrical Analogy (RESEARCH NOTE)
The mathematical modeling of a gas network is a powerful tool in order to identify the behavior of system under the different conditions. The modeling can be performed both for the steady state and unsteady state conditions. It is possible to use the fluid flow basic governing equations or the electrical analogy concept for developing the model. The second approach provides a simpler and more r...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملA Gibbs sampler for inequality-constrained geostatistical interpolation and inverse modeling
[1] Interpolation and inverse modeling problems are ubiquitous in environmental sciences. In many applications, the parameters being estimated or mapped have physical constraints, such as nonnegativity (e.g. concentration, hydraulic conductivity), solubility limits, censored data (e.g. due to dry wells or detection limits), and other physical boundaries or missing data. Geostatistical interpola...
متن کاملUnsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture
3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ground water
دوره 48 4 شماره
صفحات -
تاریخ انتشار 2010